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Active Membrane Properties and Signal Encoding in Graded

Potential Neurons

Juergen Haag and Alexander Borst

Friedrich-Miescher-Laboratory of the Max-Planck-Society, D-72076 Tuebingen, Germany

We investigated the influence of active membrane properties on
the precision by which the stimulus velocity is encoded in the
membrane potential of a motion-sensitive interneuron in the
blowfly. The so-called HS-cells respond to visual motion stimuli
with a graded shift in membrane potential. Superimposed on
this graded response are small spike-like events. This “mixed”
visual response mode can be modified by current injection in
two different ways. (1) By ongoing injection of hyperpolarizing
current, the spike-like events are turned into full-blown action
potentials, and (2) by injection of depolarizing current, the
spike-like events become completely suppressed. The visual
response then consists of a graded shift of membrane potential
only. As a measure of the fidelity, we calculated the coherence
between the motion stimulus and the response of the cell

elicited with different electrical manipulations of the cell. We
found that the coherence was highest for the cell at rest. Any
electrical manipulation resulted in a reduced coherence. This
was attributable partly to a lower signal-to-noise ratio and
partly to an increased nonlinearity in the response. By applying
a threshold operation we transformed the analog membrane
response into an all-or-none spike train. A comparison between
these two ways of signal representation revealed that more
information about the stimulus velocity is inherent in the analog
membrane potential than in the spike train.

Key Words: neural coding; reverse reconstruction; graded
potential neurons; active membrane properties; motion detec-
tion; reliability

Most neurons communicate with each other by sending trains of
action potentials along their axons. However, in addition to these
classical spiking neurons, another type of nerve cells called “grad-
ed potential neurons” is found in various parts of the nervous
system in vertebrates as well as in invertebrates. In contrast to the
former, graded potential neurons usually do not produce regular
action potentials but rather shift their membrane potential in a
graded way according to the prevalent input signal.

A long-standing problem concerning these graded potential
neurons is the question of what difference exists between them
and spiking neurons with respect to the information they convey
about the input signal (Bullock, 1981). Is the graded mode more
reliable than the spiking mode? Can graded neurons carry more
information than spiking ones or the other way around? We
examined this question previously by comparing signal encoding
in spiking (H1-cells) and graded potential neurons (HS-cells) of
the fly visual system (Haag and Borst, 1997). Both neurons belong
to the class of lobula plate tangential cells (LPTCs), located in
the posterior part of the third visual neuropile (lobula plate) of
the blowfly, which are known to respond to visual motion stimuli
in a directionally selective way (Borst and Egelhaaf, 1989, 1990;
Egelhaaf et al., 1989). H1-cells communicate between the lobula
plates of both hemispheres by sending trains of action potentials
along their axons. HS-cells synapse onto descending neurons and
respond to visual motion by a graded shift of their axonal mem-
brane potential (Hausen, 1982a, 1982b, 1984; Borst and Haag,
1996). Applying the so-called “reverse reconstruction technique”
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(Bialek et al., 1991; Bialek and Rieke, 1992; Theunissen, 1993;
Gabbiani et al., 1996; Theunissen et al., 1996), we showed that the
time-course of image velocity could be better retrieved from the
graded signals of HS-cells than from the spike trains of H1-cells,
the reason being the limited dynamic range of the spiking neuron
for inhibitory stimuli attributable to the low spontaneous spike
frequency (Haag and Borst, 1997). This might lead to the con-
clusion that a purely graded neuron without any active membrane
properties could perform optimally in representing sensory infor-
mation. However, despite their graded response to visual motion,
HS-cells house various kinds of voltage-gated currents. Voltage-
clamp experiments revealed that these cells show a fast sodium
inward current that, depending on the resting state of their
membrane potential, can lead to spike-like events superimposed
on the graded shift of membrane potential (Borst and Haag, 1996;
Haag et al., 1997). These active processes have been previously
shown to enhance the cellular responses to high-frequency syn-
aptic input signals (Haag and Borst, 1996). By additional manip-
ulation of the resting membrane potential via injection of hyper-
polarizing currents, these cells can be turned from their normal
“mixed” visual response mode into almost purely spiking cells
(Hengstenberg, 1997), or, alternatively, by injection of depolariz-
ing current, into purely graded cells (Haag and Borst, 1996).

The analysis of the role of active membrane properties with
respect to the information they convey might be of further inter-
est because the dendrites of all neurons transmit signals mainly in
a graded potential manner, and, as in HS-cells, many of them
house various voltage-gated channels (Hirsch and Gilbert, 1991;
Stuart and Sakmann, 1994; Yuste et al., 1994; Callaway and Ross,
1995; Spruston et al., 1995). The contribution of these active
membrane properties to dendritic information processing is not
yet fully understood (Yuste and Tank, 1996).

In the present study we compare the encoding of velocity
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Figure 1.  Amplitude spectrum of the stimulus used for all experiments.
The stimulus has a flat amplitude spectrum up to 30-40 Hz.

information in HS-cells under various manipulations of their
membrane potential and ask to what degree fast membrane pro-
cesses contribute to a more accurate encoding as compared with
a purely spiking or a purely graded response mode. This study
thus aims at a functional understanding of the impact that active
membrane processes have on neural coding in graded potential
neurons. We will also investigate to what degree the usual resting
potential of HS-cells represents an ideal set-point with respect to
the signal-to-noise levels inherent in the cellular membrane
signals.

MATERIALS AND METHODS
Preparation and set-up

Female blowflies (Calliphora erythrocephala) were briefly anesthesized
with CO, and mounted ventral side up with wax on a small preparation
platform. The head capsule was opened from behind; the trachea and
airsacs that normally cover the lobula plate were removed. To eliminate
movements of the brain caused by peristaltic contractions of the esoph-
agus, the proboscis of the animal was cut away, and the gut was pulled
out. This allowed stable intracellular recordings of up to 45 min. The fly
was then mounted in an upright position on a heavy recording table with
the stimulus monitors in front of the animal. The fly brain was viewed
from behind through a Zeiss dissection scope.

Stimulation

Stimuli were generated on Tektronix 608 monitors by an image synthe-
sizer (Picasso, Innisfree) and consisted of a one-dimensional grating of
14° spatial wavelength and 87% contrast displayed at a frame rate of 200
Hz. The mean luminosity of the screen was 11.2 cd/m 2. The intensity of
the pattern was square-wave-modulated along its horizontal axis. The
angular width of the stimulus fields was 40° in the horizontal and 28° in
the vertical direction as seen by the fly. To identify the cells by their
visual response properties, cells were first stimulated by the pattern
moving back and forth at 28°sec. When the actual experiment was
started, the stimulus moved at a pseudo-random velocity with a flat
spectrum up to 30—40 Hz (Fig. 1). The mean velocity of the stimulus was
0°/sec with a SD of 99.5%sec. One stimulus sweep lasted for 40 sec, and
a variable number of sweeps (5-10) were presented to each cell during
one experiment. This was repeated for each current injection that was
imposed on the cell via the recording electrode. Three levels were used,
each of which turned the cell into a distinct response mode: 0, —3, and
+3 nA. The injection of the hyperpolarizing current led to a potential
shift of approximately —12 to —14 mV; the injection of depolarizing
current led to a shift in membrane potential of approximately +10 mV.
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Recording

For intracellular recordings of HS-cells, electrodes were pulled on a
Brown-Flaming micropipette puller (P-97) using thin-wall glass capillar-
ies with an outer diameter of 1 mm (Clark, GC100TF-10). When filled
with 1 M KCI they had resistances of ~20 M. A SEL10-amplifier (npi
Electronics), which was operated in the bridge mode, was used through-
out the experiments. Out of the three different HS-cells that are located
in the lobula plate of each brain hemisphere (HSN-, HSE-, and HSS-
cells) we recorded only from HSN- and HSE-cells. Because these cells,
apart from their different receptive field locations, did not exhibit any
differences in their response properties, data from both cell types were
pooled and are collectively referred to as “HS-cells” in the following. All
recordings were made in the axons of these cells. Extracellular record-
ings of Hl-cells were made using standard tungsten electrodes with a
resistance of ~5 M(). Extracellular signals were bandpass-filtered and
subsequently processed by a threshold device delivering a 100 mV pulse
of 1 msec duration on each spike detected. For data analysis, the output
signal of the threshold device as well as the stimulus function controlling
the velocity of the pattern were fed to a PS/2 PC via a 12-bit A/D
converter (Metra Byte uCDAS-16G, Keithley Instruments) at a sampling
rate of 2 kHz and stored to hard disc.

Data evaluation

For theoretical background, also see Shannon and Weaver (1949), Cover
and Thomas (1991), Theunissen (1993), Theunissen et al. (1996), and
Rieke et al. (1997).

Reverse filter. Consider a stimulus S(¢) that causes, by some unknown
transformation, a response R(¢). We want to estimate S(¢) from R(f). To
optimize the reconstruction one chooses the filter G,.,, which minimize
the mean square error x> between S(¢) and S °(¢):

1 T
X = lim = f (s(t) — s=(t))2dt. (1)

T
o Jy

Minimizing the mean square error leads to a filter G,.,. In the linear case
the equation for this optimal filter can be solved in frequency space (with
() denoting the average over different stretches of data §; and R; and *
denoting the complex conjugate; see Implementation below):

Grev(f) - <R1*(f) R,(f)> ' (2)

This filter represents, in frequency space, the average cross-correlation
between stimulus and response divided by the average auto-correlation
of the response. It is the slope of a linear regression for S;—R; pairs at each
frequency.

Coherence function. The following section describes the calculation of
the coherence function. On the basis of the signal-to-noise ratios
(SNRs), we will also define and calculate an expected coherence function
assuming that the system uses a linear encoding scheme. For evaluating
the quality of the reconstruction, we calculate the gain relating S(¢) to
Sest(t)'

This gain is defined as:

LSS
YU =S5 S ®)

S(f) relates to R(f) and S(f) in the following way:

R - S
SP) = Ri(f) - Gl ) = Ri(f) % )

Inserting (4) into (3) yields:

s ST RA) (RECH) S
YU =S5 ()-SR R ®)

This quantity, called the coherence 72, represents the product of the
average cross-correlations between the stimulus and the response and
vice versa, divided by the stimulus and response power. It can be also
understood as the product of the optimal linear forward filter Gy q4
transforming § into R, and the optimal linear reverse filter G,,.
It follows from Equation 5 that 0 < y* < 1.

The deviation of a measured coherence from 1 can be attributed to two
different causes (1) the system is not linear; (2) the system is corrupted
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by noise. To disentangle these two possible sources, we calculated an
expected coherence yexpz for a linear system.

Given a linear system that is corrupted by additive noise, R(f) = Gyyq
S:(H) + Ni(f), Equation 5 turns into:

(S*(f)  [Grua(f) - Si(f) + Ni(f)D
(S*(f) - Si(f) '
([Gewa™(f) - S*(f) + N* ()] Si(f)

([Grwalf) = S*(f) + Ni* ()] [Grwa(f) - Si(f) + Ni(f)]

If the stimulus and the noise are uncorrelated (S;(f):N;(f)) = 0, for all
frequencies (f) this expression simplifies to:

) |Graal XS TS

yexp (f) = 2 K 3 . (6)
[Grua DESTNHSH) + (NTHNCH)
The signal-to-noise ratio is defined as the quotient of the signal and the
noise power. Because the signal is the average response, i.e., the response
without noise, this expression becomes:

(G STLISI)) ™

NIONG)

Combining Equations 6 and 7 yields:

yexpz(f) =

SNR(f) =

SNR(f)
Ve (f) = SNR(F) ¥ 1° (3)

Thus, based on the measured SNR, we can assign an expected coherence
yexpz to a system, assuming that it is linear and the stimulus and noise are
uncorrelated. The expected coherence can be also written as the ratio of
the power of the average response and the average power of the response.
Comparing this expected with the actually measured coherence allows
the difference 1 — 2 to split up into a part that is caused by noise (1 —
Yexp) and another fraction that is caused by nonlinearity (ye,> — v°).
Upper and lower bound of information rate. We will now show how the two
terms introduced above, i.e., the measured coherence y? and the coher-
ence as expected for a linear system, 7y, 2, given a certain signal-to-noise
ratio SNR, relate to the lower and upper bound of the information rate
in a neural signal, respectively.

If the mean response and the noise have a Gaussian distribution and
are independent of each other, the upper bound or “channel capacity”
can be calculated as:

1=k

Infoyg(bits/sec) = f log)[1 + SNR(f)]df. 9)

f=0
By inserting Equation 8 into 9, one obtains:

=k
Infoyp(bits/sec) = f logo[1 — vz, (f)1df. (10)

1=0

We now calculate the lower bound of the information rate. This calcu-
lation is based on the data processing inequality theorem, which says that
no clever manipulation of R can increase the inference that can be made
from R about S.

Given a processing chain § — R — §°, then I(S, $') = I(S, R).
Therefore we can safely transform the response R by whatever filter and
will never overestimate the information in R about S. Hence it follows
that the information in §* about S will be a lower bound of the real
information that is in R about S. We define a signal-to-noise ratio of our
reconstruction, SNRy.., as the mean power ratio of S°* and the differ-
ence between S and S

(SE=(f) - SN (11)
S(f) = SN (SU) = SN

This expression is identical to the one used by Rieke et al. (1997) who
defined SNRg,. as the mean power ratio of the stimulus and the differ-
ence between S and S°*'/y*. Combining Equations 4 and 5 yields:

2
SNRwol ) = 1205 (12)

SNRRec(f) =
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If we use SNRg,. instead of SNR, Equation 9 turns into:

sk
Info, g(bits/sec) = f logy[1 + SNRg..(f)]df. (13)
=0

By inserting Equation 12 into 13, the lower bound on the information
rate equals:

Info, g(bits/sec) = —jfk loga[1 — v2(f)1df. (14)

=0

Implementation. The signals were evaluated off-line by a program written
in Turbo-Pascal (Borland) using several routines from Numerical Reci-
pes (Press et al., 1988). Each continuous 40 sec stretch of the stimulus S(7)
and response function R(f) was cut into time segments of 4.096 sec
duration [S;(r) and R;(¢)], respectively. This resulted in nine S;(r) and R;(¢)
data stretches per sweep. Because during an experiment 5-10 sweeps per
stimulus condition were recorded, 45-90 data segments for each cell and
stimulus condition were obtained. Each of these segments, S;(¢) and R;(¢),
was Fourier-transformed to S;(f) and R;(f), and the cross- and auto-
correlations were estimated as the products (averaged over the number of
sweeps and the segments within one sweep) of the complex functions.
The coherence was calculated for the different level of current injection
for each cell and then averaged over different cells. The signal and noise
spectra were measured as follows. From the neural signals obtained in
response to repeated stimulus presentations, we first calculated the mean
response R(t). To calculate the noise within each stimulus period, we
subtracted the mean response from each individual response. We then
Fourier-transformed the mean response and all individual noise traces to
obtain the mean response and noise spectra. Both membrane potential
and spikes are represented in the same way and therefore were treated
identically in our evaluation programs. This definition of the signal
depends on the instantaneous firing rate carrying all the information in
the spike train; therefore, higher order statistical properties of the spike
train such as interspike intervals are not taken into account. Having
determined the ratio of signal and noise spectra, we then used Equation
8 to estimate an expected coherence for a purely linear coding scheme
given the signal-to-noise ratio determined experimentally in the way just
described. To calculate the upper and lower bounds of the information
rate, we used Equations 10 and 14, with a value of 50 Hz as the upper
integration limit because this was the highest frequency produced by our
stimulation device.

RESULTS

Figure 2 summarizes the phenomena that form the basis for our
present investigations. Here, an HS-cell was stimulated by moving
a square-wave grating in the preferred direction of the cell in
front of the ipsilateral eye of the fly. We used two different
velocity profiles: a step function (Fig. 2d) and a pseudorandomly
fluctuating function (white noise velocity) (Fig. 2i). The cellular
responses are shown on top. In all graphs, the cell was visually
stimulated. The cell was additionally manipulated simultaneously
with the visual stimulus through the recording electrode by a
positive, depolarizing current injection of +3 nA (Fig. 2a,e),
without any current injection, i.e., with the cells at resting poten-
tial of approximately —50 mV (Fig. 2b,f), and while the cells were
hyperpolarized by injection of —3 nA (Fig. 2¢,g).

At resting potential, HS-cells respond to a step-like preferred
direction motion with a graded shift in membrane potential (Fig.
2b). Superimposed on this graded shift are small spike-like events
with an amplitude of ~10-20 mV. These fast and irregular action
potentials reflect the existence of voltage-gated ion channels in
the membrane of HS-cells. By injecting hyperpolarizing current
into the axon of the HS-cell while simultaneously stimulating the
cell by pattern motion, this so-called mixed response mode can be
turned into a graded response with full-blown action potentials
(Fig. 2c). Under these conditions, active membrane properties
obviously contribute more significantly to the response of the cell.
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+3 nA

Figure 2. Responses of an HS-cell to a
step-like (d) and a pseudorandomly fluc-
tuating velocity profile (k). The top rows
(a, e) show the responses of the cell to the
motion stimuli with an additional current
injection of +3 nA; the third row (¢, g)
shows the responses with current injection
of —3 nA. b and f show the response of the
cell at rest. Note the small spike-like
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The spikes elicited under these conditions have an amplitude of
>50 mV. In contrast, when the cell is depolarized by current
injection of +3 nA, voltage-activated sodium channels become
inactivated and spikes are no longer elicited by the motion stim-
ulus (Fig. 2a). When the step-like pattern is replaced with a
pseudorandom velocity profile displayed in front of the fly, again,
full-blown action potentials are elicited only when the cell is
hyperpolarized (Fig. 2g). At resting or more positive potentials,
these action potentials become smaller and more irregular, and
often are hardly discernible from other membrane fluctuations
(Fig. 2¢,f).

To assess the coding capability of the cell under these different
response modes, we applied the reverse reconstruction technique
(Bialek et al., 1991; Theunissen et al., 1996) (for details, see

events with irregular amplitude in b and f.
By hyperpolarizing the cell these spike-
like events turn into full-blown action po-
tentials (¢, g). When the cell is depolar-
ized, spikes are no longer elicited (g, ).

time [s]

Materials and Methods). Figure 3a-c shows the impulse re-
sponses of the reverse filter obtained under the three modes of
current injection. All filters are non-zero for negative time values
to compensate for the delay of the response with respect to the
stimulus. Furthermore, they all exhibit typical bandpass charac-
teristics and reveal differences in only small details. The filter for
the depolarized cell has the largest amplitude (Fig. 3a), and for
the hyperpolarized cell it has the smallest amplitude (Fig. 3c).
After normalizing for the peak amplitudes, the following differ-
ences in the time course become visible (Fig. 3d). The filter
derived from the cell without current injection has the shortest
half-maximum width, whereas the filter derived from +3 nA
current injection has the broadest. More differences between the
filters can be seen when transformed into Fourier space (Fig. 3e).
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filter for the depolarized cell has the high-
est amplitude in the low frequency range
(dotted line).

The filter for the artificially depolarized cell amplifies much more
than the other filters in the frequency range between 0.2 and 30
Hz. The reason for that is the reduced amplitude of the cellular
response under these conditions (Fig. 2, compare e¢,f). Whereas
the amplitude of the filter for the nonmanipulated cell and the
filter for the depolarized cell have about the same amplitude for
frequencies >30 Hz, the filter amplitude of the hyperpolarized
cell already starts to decrease at 10 Hz.

We calculated the coherence functions between the visual
stimulus and the cellular responses as measured under the differ-
ent current conditions (Fig. 4). The coherence values were highest
for HS-cells at resting potential (n = 16 cells) and reached almost
80% for frequencies up to 10 Hz (thick line). For higher frequen-

time [s]

frequency [Hz]

cies the coherence fell off rather steeply and approximated zero
level at 50 Hz. When the cells were hyperpolarized during visual
motion stimulation (z = 11), the coherence values in the lower
frequency range were ~15-20% smaller than when the cells were
stimulated at resting potential (thin line). The coherence values
for the cells in the depolarized state (n = 7) lay in between
(dotted line). Thus, motion information was preserved in the
response traces of nonmanipulated cells with higher accuracy
than in the response traces of manipulated cells, no matter
whether the current was a depolarizing or a hyperpolarizing one.
To summarize these points we plotted the mean coherence value
between 0.2 and 10 Hz for the different electrical manipulations
of the cell (Fig. 5). The mean coherence level clearly is optimal
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- n = 11) the coherence was ~15-20%
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line, n = 7). The root mean square error
1 10 100  for the depolarized cell amounted to
82.9 + 2.2°sec. The error bars at 1.5 Hz
frequency [HZ] gleow the SEM for a single representative
quency.
when the cell is at its normal resting potential of approximately 0.8
—50 mV. From the coherence functions we calculated the infor-
mation rate (lower bound) for the cells under the various condi- -
tions (see Materials and Methods; Eq. 14). This was done using
an upper frequency limit of 50 Hz. For the cells at rest the lower 0.7 =
bound of the information rate was 37 bits/sec and 32 bits/sec for
the depolarized cells. The hyperpolarized cells had the lowest o T
information rate with 20 bits/sec. o 06 —
Although the coherence reached rather high values in the low Q )
frequency range of ~60% even for the electrically manipulated 5 .
cells, there still remained a gap of ~20% as compared with the )
nonmanipulated cells. What was the reason for the reduced %‘ 0.5 =
coherence in cells that were moved away from resting potential by 9
current injection? The coherence difference, in principle, could do)i) -
be caused by a decrease in signal-to-noise ratio and to an in- g
creased nonlinearity introduced by the manipulation of the mem- > 04 =
brane potential via current injection or both. To decide which of <
these sources was the prime reason for the diminished coherence, N
the signal (i.e., the mean response) and the noise spectra in
response to repeated stimulus presentations were measured (Fig. 0.3
6a—c). The noise was calculated as the difference between the hyperpol rest depol.
individual membrane response and the average response (see n=11 n=16 n=7

Materials and Methods). Comparison of the signal and noise
spectra for different current injections revealed that the hyperpo-
larized cells showed the highest noise level, whereas the signal
was as high as in the cells at rest (Fig. 6, compare a,b). The greater
influence of active membrane processes thus did not enhance the
mean response but did increase the noise level. Depolarized cells
exhibited the lowest signal amplitude (Fig. 6¢). This might reflect
the inactivation of voltage-dependent channels and the concom-
itant loss of signal amplification (Haag and Borst, 1996). In
contrast to the hyperpolarized cells, the noise level was the same

Figure 5. Mean coherence level and SEM between 0.2 and 10 Hz for the
three states of the cell (same data as Fig. 4). The coherence was highest
for HS-cells at rest and reached values of 0.68. For hyperpolarized
HS-cells the mean coherence was 25% lower. The value for the depolar-
ized cells lay in between.

as in the nonmanipulated cells. All of these facts together resulted
in the SN Rs that are shown in Figure 6d. The SNR was highest
for the cells at rest (thick line) and dropped to the value of 1 at
35 Hz. For the depolarized (dotted line) and hyperpolarized
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(thin line) cells, the SNRs were almost identical. They were
significantly lower than for the nonmanipulated cells and dropped
to the value of 1 at frequencies >25 Hz. Thus, electrical manip-
ulation of the membrane potential led to a reduction of the SNR
in both cases, no matter whether the cells were depolarized or
hyperpolarized.

All of these results point to a decreased SNR as a possible
source of the reduced coherence. However, as mentioned above,
an increased nonlinearity in the encoding of motion information
might yield the same effect. To assess such possible nonlinearities,
we calculated an expected coherence function from the measured
signal and noise spectra (see Materials and Methods; Eq. 8),
assuming a purely linear encoding. A prerequisite for calculating
the expected coherence from the signal and noise spectra is that
the cross-correlation between the stimulus and the noise is zero.
The cross-correlation between the noise and the stimulus (Fig.
7b) is three orders of magnitude smaller than the cross-
correlation between the response of the cell and the stimulus (Fig.
7a). To calculate the upper bound of the information rate with
Equation 10 the noise distribution has to be Gaussian. Figure
Tc—e suggests that the noise is a Gaussian stochastic process and
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that the injection of current did not influence the distribution of
the noise (Fig. 7c—e). The expected coherence values were highest
for HS-cells at resting potential, reaching values of 90-95% in the
low-frequency range (Fig. 8a). For the electrically manipulated
cells, the respective values were ~10% lower. This point is
summarized in Figure 92 where the average expected coherence
between 0.2 and 10 Hz for the electrically manipulated and the
cells at rest is shown. The lower expected coherence of the
electrically manipulated cells reflects the decreased SNR under
these conditions. However, if nothing else had changed in the
cells except for a decreased SNR, the expected coherences should
account completely for the difference between the measured
coherence functions of the cells under the different conditions. To
evaluate this question quantitatively, we calculated the difference
between the expected and the measured coherences of the cells
for each condition. This difference can be regarded as the degree
of nonlinearity inherent in the response of the cell, independent
of the actual SNR. If the cell was perfectly linear, measured and
expected coherence functions should be identical. If there was a
nonlinearity in the response and this nonlinearity did not change
by current injection, then the difference between measured and
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cells (n = 11) was highest, whereas the 0.5
values for depolarized (n = 7) and cells

atrest (n = 16 cells) are almost identical.

(Note different scaling of a and b.)
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expected coherence should remain the same, independent of the
experimental condition. Figure 8b shows the result of our analy-
sis. Here, the difference between measured and expected coher-
ences are plotted. The nonlinearity was highest in the low-
frequency range for hyperpolarized cells. The depolarized cells
and the cells at rest showed the same amount of nonlinearity.
This can also be seen in the averaged nonlinearity shown in
Figure 9b. This finding demonstrates that, in addition to the
change of SNR spectra, injection of hyperpolarizing current also
led to an increased nonlinearity in the cells. From the expected
coherences we calculated the channel capacity (upper bound, Eq.
10) for the cells under the various conditions, again using an
upper frequency limit of 50 Hz. The channel capacities for the
electrically manipulated cells were almost identical to each other
(depolarization: 84 bits/sec; hyperpolarization: 79 bits/sec) and
approximately 30 bits/sec lower than the rate for the cells at rest
(110 bits/sec). Compared with the lower bound, the values for the
upper bound are ~50-80 bits/sec higher (Fig. 10).
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To disentangle the information carried by the graded mem-
brane potential from the information carried by the action poten-
tials that occur in HS-cells when hyperpolarized, we artificially
transformed the analog membrane signal of HS-cells (Fig. 11b)
into a spike train (Fig. 11c) or a response trace without spikes
(Fig. 11a) by applying a threshold operation. Whenever the mem-
brane potential was above this threshold, the spike was cut out
(Fig. 11a) or a unitary pulse of 1 msec duration and 100 mV
amplitude was added to the output, which was zero otherwise
(Fig. 11c). The latter procedure turned the original analog record
of the membrane potential into a binary all-or-nothing signal, the
same way the action potentials of spiking neurons like the H1-cell
are usually recorded extracellularly. The filters (data not shown)
and the coherence for the measured membrane potential and the
“spike-less” potential trace turned out to be identical (Fig. 12).
Thus, it seems that the occurrence of spikes is not responsible for
the lower coherence of hyperpolarized cells compared with cells
at rest.
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Figure 10. Upper and lower bounds of information rates for the three
states of the cell. The error bars show the SEM.

To measure how well the information about the stimulus ve-
locity was retained in this artificial spike train, we applied the
same technique as for the analog response traces. Figure 13a
shows the coherence between stimulus velocity and the analog
membrane potential for the hyperpolarized cell (thin line) and
the coherence between stimulus velocity and the spike train (thick
line). In general, the coherence between the stimulus velocity and
the membrane potential was significantly higher than the coher-
ence between stimulus velocity and the spike train. An examina-
tion of the difference between measured and expected coherence
as a measure of nonlinearity in the signals revealed that the
diminished coherence was only partly attributable to different
degrees of nonlinearity (Fig. 13b). In fact, the degree of nonlin-
earity was rather similar under both conditions (note different
scales on the y-axes of Fig. 13a,b). Thus, the difference between
the measured coherences of graded response versus spike train
was largely attributable to a decreased signal-to-noise ratio after
the graded response was thresholded.

In Figure 110, the spikes of HS-cells can be seen to have
variable amplitudes. To test whether the amplitude of the spikes
carries some information, we again transformed the analog mem-
brane potential of hyperpolarized HS-cells into spike trains with
unitary duration. In contrast to Figure 11c, the amplitude of the
spikes was not set to a unitary value but left the same as the
amplitude of the original spike. This transformation did not result
in a greater coherence compared with the spike train with unitary
amplitude (data not shown).

Because our previous study (Haag and Borst, 1997) revealed
that the spiking H1-cell exhibited a lower coherence than the
graded HS-cell, the outcome of the comparison between the
graded and the thresholded HS-cell response was not surprising:
spikes were elicited only in response to motion in the preferred
direction, whereas the graded membrane response could be
shifted in both directions. Because of the low spontaneous fre-
quency, there was very little information in the spike train about
motion in the anti-preferred direction. This limitation of spike
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trains applied to the spiking Hl-cell as well as the artificially
spiking HS-cell. We therefore compared the spikes obtained by
thresholding the response of HS-cells with the spikes as recorded
from the Hl-cell. We found that the spiking HS-cell showed a
lower coherence than the H1-cell (Fig. 14a). The main deviation
of the coherences for both cell types was between 1 and 20 Hz. In
that range the measured coherence for the HS-cell was ~20%
lower than the coherence found for the H1-cell. For HS-cells the
signal as well as the noise was much lower than the respective
values for the Hl-neuron (Fig. 14b). This was attributable to the
low average firing rate found for the HS-cells. H1-cells responded
with an average firing rate of 48 = 1 spikes/sec during the
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= with spikes
without spikes
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0.0 1 Illllll ] 1 IIIIIII 1
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Figure 12. Comparison of the coherence functions calculated for the
measured membrane potential of a hyperpolarized HS-cell (thick line)
and the artificially reduced response trace (thin line).
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stimulation. HS-cells fired with an average rate of 11 = 0.5
spikes/sec in response to the identical stimulus.

When we calculated signal-to-noise ratios, we found that these
ratios were also smaller in HS-cells than in H1-cells (Fig. 14¢). In
contrast, the degree of nonlinearity, i.e., the difference between
measured and expected coherence, was about the same for both
cell types (Fig. 14d). From these SNRs, we again calculated
channel capacities for the HS spike traces and Hl-cells. The
information rate for HS-cells (upper bound, 67 bits/sec; lower
bound, 13 bits/sec) was lower than for H1-cells (upper bound, 79
bits/sec; lower bound, 23 bits/sec) in the frequency range of
0.25-50 Hz. We also calculated the amount of information carried
by a single action potential simply by dividing the upper and the
lower bound information rate in bits per second by the number of
spikes counted per second. This procedure resulted in a high
information content of approximately 6 bits (upper bound) and
1.2 bits (lower bound) per spike of the HS-cells as compared with
only 1.7 bits (upper bound) and 0.5 bits (lower bound) per spike
for the H1-cells. Because the original information rates of both
cells were rather similar, the large difference in the information
per action potential was attributable to the low average firing rate
found in HS-cells as compared with Hl-cells. To examine the
influence of a low spike rate on the information content, we
artificially decreased the average spike frequency of Hl-cells by
taking only every fourth spike of the original record of the motion
response into consideration. This reduction of the number of
spikes led to an average rate of 12 spikes/sec, which is comparable
to the response of HS-cells. The coherence for this artificially
reduced spike train of H1-cells together with the coherence for
spike trains from H1- and HS-cells is shown in Figure 15a. The
reduction of the number of spikes mainly led to a decreased
coherence for frequencies between 3 and 30 Hz. The coherence
for these higher frequencies became as low as the coherence of
HS-cells (Fig. 15¢). Thus, 75% of all the H1 spikes are responsible
for the small improvement of ~20% coherence in this frequency
range.

DISCUSSION

In this paper, we investigated the influence of active membrane
properties on the encoding of stimulus velocity in the neural
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signals of a motion-sensitive interneuron of the fly visual system,
the HS-cell. These cells are characterized by a low resting poten-
tial (approximately —50 mV) and a graded potential shift with
spike-like events superimposed in response to visual motion stim-
uli. The injection of depolarizing current while the visual re-
sponse of the cell was measured led to a reduction in the number
and amplitude of these action potentials. The injection of hyper-
polarizing current induced full-blown action potentials in re-
sponse to excitatory visual stimuli. This allowed us to study the
same cell type in different response regimes.

In this context it is important to ask to what extent the recorded
response properties and resting potentials of HS-cells reflect the
properties of the cell without electrode impalement. Of course,
absolute certainty about this point is impossible, but on the basis
of the following results we are confident that the response prop-
erties are not artificial. (1) Intracellular recordings with the same
type of electrodes from other motion-sensitive interneurons (e.g.,
H1-cells) that possess much thinner axons than HS-cells resulted
in reliable resting potentials of approximately —60 mV. Under
these conditions, H1-cells were found to always produce large-
amplitude action potentials (Haag, 1994). (2) Although the action

Hl-cells.

potentials of the spiking H1-cell can be easily recorded with an
extracellular electrode, no such recordings have ever been re-
ported from HS-cells. (3) The impalement of the dendrite or the
axon of HS-cells by a second intracellular electrode has no influ-
ence on response properties and resting potential (Haag and
Borst, 1996) or the input resistance (J. Haag and A. Borst,
unpublished observations) of the cell.

To evaluate the coding quality of the neural signals under the
different conditions caused by the current injection, we calculated
the coherence between the stimulus and responses. This value is
confined between 0 and 1 and is also known as the correlation
coefficient in case of scalar value pairs. It measures the amount of
scatter of the data points around the linear regression line.
Clearly, a large scatter and thus a low coherence can have two
causes: (1) there is a large amount of noise present in the
transformation between stimulus and response, or (2) the trans-
formation from the stimulus to the response is nonlinear by
nature or both. We disentangled these two sources for a reduced
coherence by measuring, in addition to the coherence, the signal-
to-noise ratio in the responses by repeated stimulus presentations.
Assuming a purely linear stimulus—response relationship, we cal-
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culated an expected coherence based on these measured signal-
to-noise ratios. The difference between a value of 1 and the
expected coherence thus could be attributed to noise, whereas the
remaining difference between the expected and the measured
coherence had to be caused by nonlinear encoding.

We found that HS-cells without an electrical manipulation
represented motion information with a higher precision than
electrically manipulated cells. Depolarization as well as hyperpo-
larization of the cells led to a decrease in coherence. In the
depolarizing cells, this decrease was exclusively attributable to a

H1/4 HS H1

H1/4 HS

lower signal-to-noise ratio of the motion responses. Compared
with the cells at rest, the noise level did not change, whereas the
amplitude of the mean response decreased. This was most likely
caused by an inactivation of voltage-dependent channels that
normally amplify the motion response of the cells at rest. Because
the noise level was the same for the depolarized cell and the cell
at rest, we conclude that active membrane processes do not
contribute much to the noise level of these cells at resting poten-
tial. In the hyperpolarized cells the decrease of the coherence was
again attributable to a lower SNR, but in addition to an increased
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nonlinearity in the response. The lower SNR resulted from an
increased noise level. Thus, the larger contribution of voltage-
dependent processes did not further amplify the mean response
but did enhance the amplitude of the noise. In addition, the
response also became more nonlinear under these conditions. It
appears that the resting potential of the cells represents an ideal
set-point where image velocity can be optimally represented by
the membrane potential of the cell. Thus, in contrast to our
expectation, active processes, when tuned in just the right way, do
not deteriorate the representation of image velocity in the neural
signal of HS-cells by the introduction of nonlinearities or an
increase of noise but rather enhance the coding efficiency by
amplifying signals but not noise. This could be accomplished,
e.g., by a regional differentiation between signal and noise going
along with a spatially inhomogeneous distribution of amplifica-
tion mechanisms. Whether the dominant noise source is intrinsic
to HS-cells or caused by presynaptic circuitry remains to be
clarified. In any case, it will be important to gain a detailed
understanding at the biophysical level of the intricate interplay
between the intrinsic active membrane properties of HS-cells and
their synaptic input signals and the consequences for their coding
capabilities. Biophysically realistic compartmental models of HS-
cells, which were developed recently in our laboratory (Borst and
Haag, 1996; Haag et al., 1997), shall prove a useful tool in this
context.

As a consequence of the maximum SNR of HS-cells at rest, the
channel capacity was also maximum under these conditions. The
same was true for the lower bound on the information rate. When
calculating lower and upper bounds, we restricted the frequency
range to an upper limit of 50 Hz, because given a frame rate of
200 Hz of our stimulus device the highest velocity modulation
that we could produce amounted to 50 Hz. We found a channel
capacity at rest of 110 bits/sec. This information rate is rather low
compared with the large monopolar cells of the fly visual system,
which are postsynaptic to the photoreceptors and exhibit, depend-
ing on the mean light level, a temporal low-pass or bandpass filter
characteristic (van Hateren 1992a,b). Large monopolar cells re-
spond to changes in light intensity by a graded shift of membrane
potential as HS-cells do. The upper limit of the rate at which
these cells transmit information about the light intensity was
measured to 1650 bits/sec (de Ruyter van Steveninck and Laugh-
lin, 1996) and thus is ~15 times higher than the maximum
possible rate at which HS-cells could transmit information about
the stimulus velocity. This huge difference probably reflects the
fact that in the case of the large monopolar cells the light intensity
is already represented at the photoreceptor output synapse,
whereas the velocity signal is not a stimulus parameter uniquely
encoded by the synaptic input but rather is being calculated, at
least in part, on the dendrite of the LPTCs (Single et al., 1997).

The comparison between the membrane potential and the
artificially produced spike trains obtained by thresholding the vi-
sual responses of hyperpolarized HS-cells revealed that the ana-
log membrane potential carried more information than the binary
all-or-nothing spike train. This is most likely attributable to the
fact that when the average spontaneous firing rate is low, spikes
can transmit information almost exclusively about one direction
of the motion stimulus, whereas graded responses can follow both
directions of the motion stimuli without any immediate ceiling
effects (Haag and Borst, 1997). The comparison of the spike
trains of H1- and HS-cells showed that more information about
the stimulus was retained in the spike train of H1-cells. This is
most likely because of the lower spike frequency of HS-cells.
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Another question arising from this work concerns the way
information is transmitted from HS-cells to postsynaptic cells. If
there is a graded transmitter release (e.g., Angstadt and Calabr-
ese, 1991; Laurent, 1993) without any threshold, the information
contained in the graded membrane response of HS-cells can be
fully transmitted to the next cell. A threshold operation would
introduce further nonlinearities in the response of the postsyn-
aptic cell to visual motion stimuli. More importantly, information
about the null direction motion that is inherent only in the graded
membrane response of HS-cells but not in its spike-like depolar-
ization could not be transmitted through this synapse. This seems
to be unlikely, because HS-cells are the only known horizontal-
sensitive large-field output elements of the lobula plate (Hausen,
1984), and thus flies could not respond to null-direction motion.
However, motion stimuli going from back to front and thus along
the null direction of the HS-cells have been found to elicit
significant optomotor responses in flies (Wehrhahn, 1981; Borst
et al., 1991). The information theoretical analysis of postsynaptic
cells will show how much of the information about null-direction
motion that is inherent in the analog membrane potential of
HS-cells is indeed transmitted to these postsynaptic neurons.
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